Part Number Hot Search : 
ADIS1 1N4746 35005 RF954 BU8241F 02242 FTSM102A B5975X
Product Description
Full Text Search
 

To Download ISL28533FVZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 5v, rail-rail i/o, zero-drift, programmable gain instrumentation amplifiers isl28533, isl28534, isl28535, is l28633, isl28634, isl28635 the isl28533, isl28534, isl28535, isl28633, isl28634, and isl28635 are 5v zero-drift rail-to-rail input/output programmable gain instrumentation amplifiers (pgia). these instrumentation amplifiers feature low offset, low noise, low gain error and high cmrr. they are ideal for high precision applications over the wide industrial temperature range. these instrumentation amplifiers are designed with a unique 2-bit, 3-state logic interface that allows up to 9 selectable gain settings. the isl2853x single-ended output includes and additional uncommitted zero-drift amplifier, useful to buffer the ref input or used as a precision amplifier. the isl2863x differential output am plifier includes a reference pin to set the common mode output voltage to interface with differential input adcs. applications ? pressure and strain gauge transducers ?weight scales ?flow sensors ? biometric: ecg/ blood glucose ? temperature sensors ? test and measurement ? data acquisition systems ? low ohmic current sense features ? ultra high precision front end amplifier ? zero drift instrumentation amplifier ? pin selectable 9 gain settings: g = 1 to 1,000 ? rail-to-rail input/output ? single ended output (isl28533, isl28534, isl28535) ? differential output (isl28633, isl28634, isl28635) ? rfi filtered inputs improve emi rejection ? single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5v to 5.5v ? dual supply . . . . . . . . . . . . . . . . . . . . . . . . . 1.25v to 2.75v ? low input offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5v, max ? low input offset drift . . . . . . . . . . . . . . . . . . . . . 50nv/c, max ? high cmrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138db, g = 100 ? low gain error. . . . . . . . . . . . . . . . . . . . . <0.4%, all gains, max ? gain bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3mhz ? input voltage noise (0.1hz to 10hz). . . . . . . . . . . . . . 0.4v p-p ? operating temperature range. . . . . . . . . . . .-40c to +125c related literature ? ?daq on a stick, strain gauge with programmablechopper stabilized in-amp? an1853 ? ?isl2853x_63xev2z user's guide? an1880 figure 1. isl2853x single-ended output figure 2. isl2863x differential output + - + - ina- a2 a1 ina+ + - + - ref outa a3 a4 r g r g 9 gain control g0 g1 in+ in- out va- va+ 20k ? 20k ? 20k ? 20k ? + - + - + - ina- a2 a1 ina+ outa- a3 r g r g g0 g1 + - + - outa+ ref a4 va- va+ 20k ? 20k ? 20k ? 20k ? 9 gain control 1m ? 1m ? november 22, 2013 fn8364.1 caution: these devices are sensitive to electrostatic discharge; follow proper ic handling procedures. 1-888-intersil or 1-888-468-3774 | copyright intersil americas llc 2013. all rights reserved intersil (and design) is a trademark owned by intersil corporation or one of its subsidiaries. all other trademarks mentioned are the property of their respective owners.
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 2 fn8364.1 november 22, 2013 table of contents pin configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 typical sensor application block diagram, isl28533 single-ended output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 typical bridge sensor application block diagram, isl28634 differen tial output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 g0 and g1 programmable gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 operating specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 typical instrumentation amplifier performance curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 typical operational amplifier performance cu rves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 precision sensor amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 single-ended output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 differential output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 rfi filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 gain stage output va+/va- pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 programmable gain logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 gain setting with dcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 gain switching delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 dual supply operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 power supply and ref pin sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 common mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 sensor health monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 active shield guard drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 about intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 package outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 3 fn8364.1 november 22, 2013 pin configurations isl28533, isl28534, isl28535 single ended output (14 ld tssop) top view isl28633, isl28634, isl28635 differential output (14 ld tssop) top view pin descriptions isl28533 isl28534 isl28535 (single- ended out) isl28633 isl28634 isl28635 (differential out) pin name equivalent circuit function comments 4 4 ina+ circuit 1 ina+ input positive differential input 5 5 ina- circuit 1 ina- input negative differential input 12 - outa circuit 2 ina output single ended output - 12 outa+ circuit 2 ina +output positive differential output - 10 outa- circuit 2 ina -output negative differential output 6 6 va+ circuit 1 a2 output ina gain stage +output 3 3 va- circuit 1 a1 output ina gain stage -output 11 11 ref circuit 1 output reference ina output reference 1 1 g0 circuit 1 gain control logic input 2 2 g1 circuit 1 gain control logic input 8 - in+ circuit 1 non-inverting op amp input auxiliary amplifier in+ 9 - in- circuit 1 inverting op amp input auxiliary amplifier in- 10 - out circuit 2 op amp output auxiliary amplifier out 14 14 v+ circuit 3 positive supply s ingle supply: +2.5v to +5.5v dual supply: 1.25v to 2.75v 7 7 v- circuit 3 negative supply - 8, 9 n.c. no connect 13 13 dnc do not connect pin must float 1 2 3 4 g0 g1 va- ina+ - + 5 6 7 ina- va+ v- 10 9 8 11 12 13 14 v+ dnc outa ref out in- in+ - + 1 2 3 4 g0 g1 va- ina+ 5 6 7 ina- va+ v- 10 9 8 11 12 13 14 v+ dnc outa+ ref outa- n.c. n.c. - + v+ v- out circuit 2 v+ v- capacitively coupled esd clamp circuit 3 v+ v- ina+, ina-, in+, in- circuit 1
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 4 fn8364.1 november 22, 2013 typical sensor application bloc k diagram, isl28533 single-ended output figure 3. sensor application with common mode sensing and buffered reference drive typical bridge sensor applic ation block diagram, isl28634 differential output figure 4. simplified strain gauge schematic + - + - ina- a2 a1 ina+ + - + - ref outa a3 a4 r g r g in+ in- out va- va+ 20k ? 20k ? 20k ? 20k ? isl28533 sensor common mode sense isl26320 12-bit adc in isl21090 5v v ref isl21090 2.5v v ref v cc +5v v+ ref+ out- + - v cm 10k ? 10k ? out+ v cc v- isl28134 + - isl28634 isl26104 24-bit adc to gui isl21010 5v vref r5f10jbc (rl78/g1c) renesas +5v 35 0 ? 350 ? foil strain 3 50 ? gauge 50 ? 50 ? s s microcontroller + - + - va+ va- isl28233 isl23328 gain control ch 1 ch 2 ch 4 ch 3 dcp *see islre-bdgstkev1z daq on a stick user?s guide? an1853
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 5 fn8364.1 november 22, 2013 g0 and g1 programmable gain setting g1 (note) g0 (note) isl28533 isl28633 isl28534 isl28634 isl28535 isl28635 00111 0z 2 2 100 01 4 10 120 z 0 5 50 150 z z 10 100 180 z 1 20 200 200 1 0 40 300 300 1 z 50 500 500 1 1 100 1000 1000 applications medical piezo-electric pressure sensor fluid sensor shunt sense optical sensors strain gauge thermocouple strain gauge note: for valid logic ?z? state leave g0/g1 pins in high impedance state. internal 100k ? pull-up and pull-down resistors on these pins establishes logic ?z?. see application section for more information. ordering information part number (notes 1, 2, 3) part marking temp range (c) package (pb-free) pkg. dwg. # ISL28533FVZ 28533 fvz -40 to +125 14 ld tssop m14.173 isl28534fvz 28534 fvz -40 to +125 14 ld tssop m14.173 isl28535fvz 28535 fvz -40 to +125 14 ld tssop m14.173 isl28633fvz 28633 fvz -40 to +125 14 ld tssop m14.173 isl28634fvz 28634 fvz -40 to +125 14 ld tssop m14.173 isl28635fvz 28635 fvz -40 to +125 14 ld tssop m14.173 isl28533ev2z isl28533 evaluation board isl28534ev2z isl28534 evaluation board isl28535ev2z isl28535 evaluation board isl28633ev2z isl28633 evaluation board isl28634ev2z isl28634 evaluation board isl28635ev2z isl28635 evaluation board notes: 1. add ?-t*? suffix for tape and reel. please refer to tb347 for details on reel specifications. 2. these intersil pb-free plastic packaged products employ specia l pb-free material sets, molding compounds/die attach materials , and 100% matte tin plate plus anneal (e3 termination finish, which is rohs compliant and compatible with both snpb and pb-free soldering operations). in tersil pb-free products are msl classified at pb-free peak reflow temperatures that meet or exceed the pb-free requir ements of ipc/jedec j std-020. 3. for moisture sensitivity level (msl), please see device information page for isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 . for more information on msl please see tech brief tb363 .
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 6 fn8364.1 november 22, 2013 absolute maximum rating s thermal information supply voltage v+ to v- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6v input voltage v in to gnd . . . . . . . . . . . . . . . . . . ((v-) - 0.3v) to ((v+) + 0.3v) input differential voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v+ to v- input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ma output current i out (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40ma latch-up class 2 level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100ma esd rating human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8kv machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700v charged device model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kv thermal resistance (typical) ja (c/w) jc (c/w) 14 ld tssop (notes 4, 5) . . . . . . . . . . . . . . 92 30 maximum storage temperature range . . . . . . . . . . . . . -65c to +150c pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/ pbfree/pb-freereflow.asp operating conditions temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40c to +125c maximum junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . +140c supply voltage . . . . . . . . . . . . . . . . . . . . . . 2.5v (1.25v) to 5.5v (2.75v) caution: do not operate at or near the maximum ratings listed for extended periods of time. exposure to such conditions may adv ersely impact product reliability and result in failures not covered by warranty. notes: 4. ja is measured with the component mounted on a high effective thermal conductivity test board in free air. see tech brief tb379 for details. 5. for jc , the ?case temp? location is taken at the package top center. electrical specifications v+ = 5v, v- = 0v, v in+ = v in- = v ref = 2.5v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c. parameter description conditions min (note 6 )typ max (note 6 )unit power supply dc specifications v s supply voltage v s = (v+) - (v-) 2.5 - 5.5 v i s supply current v s = 5v isl2853x, r l = open - 2.9 3.4 ma - - 3.5 ma isl2863x, r l = open - 3 3.5 ma - - 3.6 ma 5v dc specifications instrumentation amplifier v os, i input stage offset voltage +25c -5 0.6 5 v -40c to +85c -9 - 9 v -40c to +125c -10 - 10 v tcv os, i input stage offset voltage temperature coefficient -40c to +125c -50 5 50 nv/c v os, o output stage offset voltage +25c -15 2 15 v -40c to +85c -45 - 45 v -40c to +125c -65 - 65 v tcv os, o output stage offset voltage temperature coefficient -40c to +125c -0.5 0.15 0.5 v/c i b input bias current +25c -400 50 400 pa -40c to +85c -400 - 400 pa -40c to +125c -1 - 1 na i os input offset current +25c -300 50 300 pa -40c to +85c -350 - 350 pa -40c to +125c -1 - 1 na z in input impedance common mode - 10 - g ? -5 - pf
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 7 fn8364.1 november 22, 2013 e gain gain error g = 1 to 50 -0.2 0.05 0.2 % -0.35 - 0.35 % g = 100 to 500 -0.3 0.05 0.3 % -0.4 - 0.4 % g = 1000 -0.4 0.05 0.4 % -0.5 - 0.5 % gain_tc gain drift g = 1 to 1,000 -40c to +125c - 10 - ppm/c g nl gain non-linearity v out = +0.1v to +4.9v; r l = 10k ? g = 1 - 5 - ppm g = 10 - 5 - ppm g = 100 - 10 - ppm g = 1000 - 10 - ppm cmrr common mode rejection ratio v cm = +0.1v to +4.9v g = 1 80 100 - db g = 10 100 114 - db 90 --db g = 100 110 138 - db 100 --db g = 1000 120 150 - db 110 --db cmir common mode input range guaranteed by cmrr (v-) +0.1 - (v+) -0.1 v v ref range reference voltage range isl2853x v- - v+ v isl2863x (v-) +0.6 - (v+) -1 v i ref reference input current isl2853x v in+ = v in- = v ref = 2.5v -0.5 0.1 0.5 a -1 - 1 a isl2863x v ref = 2.5v -500 150 500 pa -25 - 25 na z ref reference input impedance isl2853x 36 40 44 k ? isl2863x - 10 - g ? psrr power supply rejection ratio vs = +2.5v to +5.5v g=1v/v 110 130 - db g=10v/v 110 140 - db g=100v/v 120 140 - db g=1000v/v 120 140 - db i sc short circuit output source current r l = short to v- - 45 - ma short circuit output sink current r l = short to v+ - -45 - ma v oh high output voltage from v+ ((v+) - v out ) r l = 10k ? v+ to v ref -10 15 mv - - 20 mv electrical specifications v+ = 5v, v- = 0v, v in+ = v in- = v ref = 2.5v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c. (continued) parameter description conditions min (note 6 )typ max (note 6 )unit
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 8 fn8364.1 november 22, 2013 v ol low output voltage from v- ((v-) + v out ) r l = 10k ? v- to v ref -10 15 mv -- 20 mv 5v g0/g1 logic inputs instrumentation amplifier v ih logic input high threshold vs = (v+) - (v-) 0.8*(vs) -- v v il logic input low threshold vs = (v+) - (v-) - - 0.2*(vs) v v ih_z /v il_z hi-z logic input range vs = (v+) - (v-) 0.4*(vs) - 0.6*(vs) v v oc open circuit logic voltage set by 2 internal 100k ? resistors; v s = (v+) - (v-) 0.45*v s - 0.55*v s v z in logic input impedance - 50k - k ? 5v ac specifications instrumentation amplifier e n total input referred voltage noise e n = (e ni 2 + (e no /g) 2 + (i n *r s ) 2 ) e ni input noise voltage f = 0.1hz to 10hz; g = 100 - 0.4 - v p-p f = 1khz; g = 100 - 17 - nv/ hz e no output noise voltage f = 0.1hz to 10hz; g = 1 - 1.8 - v p-p f = 1khz; g = 1 - 65 - nv/ hz i n input noise current f = 10hz; r s = 5m ? ; g = 100 - 100 - fa/ hz gbwp gain bandwidth product g 10 - 2.3 - mhz g < 10 - 1.6 - mhz 5v transient response in strumentation amplifier sr slew rate 20% to 80% v out = 4v p-p ; g = 1 - 0.8 - v/s v out = 4v p-p ; g = 100 - 0.28 - v/s t gpd gain select prop delay all gains, 2v to 4v output after gain change -1 - s t s settling time to 0.1%, 4v p-p step - 20 - s to 0.01%, 4v p-p step - 70 - s t recover output overload recovery time, recovery to 90% of output saturation g = 1 - 1 - s 5v dc specifications operational amplifier av open open loop gain - 140 - db v os input offset voltage t a = +25c -2.5 -0.2 2.5 v t a = -40c to +85c -3.475 - 3.475 v t a = -40c to +125c -4 - -4 v tcv os input offset voltage temperature coefficient t a = -40c to +125c -15 -0.5 15 nv/c i b input bias current t a = +25c -300 15 300 pa t a = -40c to +85c -300 - 300 pa t a = -40c to +125c -550 - 550 pa electrical specifications v+ = 5v, v- = 0v, v in+ = v in- = v ref = 2.5v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c. (continued) parameter description conditions min (note 6 )typ max (note 6 )unit
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 9 fn8364.1 november 22, 2013 i os input offset current -600 50 600 pa t a = -40c to +85c -600 - 600 pa t a = -40c to +125c -1100 - 1100 pa common mode input voltage range v+ = 5.0v, v- = 0v guaranteed by cmrr 0 - 5 v cmrr common mode rejection ratio v cm = 0v to 5v 110 135 - db 97 --db psrr power supply rejection ratio v s = 2.5v to 5.5v 120 135 - db i sc short circuit output source current r l = short to v- - 40 - ma short circuit output sink current r l = short to v+ - -40 - ma v oh output voltage swing, high from v out to v + r l = 10k ? to v - -20 45 mv r l = 10k ? to v - -- 50 mv v ol output voltage swing, low from v - to v out r l = 10k ? to v + - 20 45 mv r l = 10k ? to v + -- 50 mv 5v ac specifications operational amplifier c in input capacitance differential - 5.2 - pf common mode - 5.6 - pf e n input noise voltage f = 0.1hz to 10hz - 0.25 - v p-p f = 1khz - 10 - nv/ hz i n input noise current f = 1khz - 200 - fa/ hz gbwp gain bandwidth product - 3 - mhz electrical specifications v+ = 5v, v- = 0v, v in+ = v in- = v ref = 2.5v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c. (continued) parameter description conditions min (note 6 )typ max (note 6 )unit operating specifications v+ = 2.5v, v- = 0v, vcm = 1.25v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c . parameter description conditions min (note 6) typ max (note 6) unit 2.5v dc specifications instrumentation amplifier v os, i input stage offset voltage +25c -5 0.6 5 v -40c to +85c -9 - 9 v -40c to +125c -10 - 10 v tcv os, i input stage offset voltage temperature coefficient -40c to +125c -50 5 50 nv/c v os, o output stage offset voltage +25c -15 2 15 v -40c to +85c -45 - 45 v -40c to +125c -65 - 65 v tcv os, o output stage offset voltage temperature coefficient -40c to +125c -0.5 0.15 0.5 v/c i b input bias current +25c -400 50 400 pa -40c to +85c -400 - 400 pa -40c to +125c -1 - 1 na
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 10 fn8364.1 november 22, 2013 i os input offset current +25c -300 50 300 pa -40c to +85c -350 - 350 pa -40c to +125c -1 - 1 na z in input impedance common mode - 10 - g ? -5- pf e gain gain error g = 1 to 50 -0.2 0.05 0.2 % -0.35 - 0.35 % g = 100 to 500 -0.3 0.05 0.3 % -0.4 - 0.4 % g = 1000 -0.4 0.05 0.4 % -0.5 - 0.5 % gain_tc gain drift g = 1 to 1,000 -40c to +125c - 10 - ppm/c cmrr common mode rejection ratio v cm = +0.1v to +2.4v g = 1 80 100 - db g = 10 100 114 - db 90 --db g = 100 110 138 - db 100 --db g = 1000 120 150 - db 110 --db cmir common mode input range guaranteed by cmrr (v-) +0.1 - (v+) -0.1 v v ref range reference voltage range isl2853x v- - v+ v isl2863x (v-) +0.6 - (v+) -1 v i ref reference input current isl2853x v in+ = v in- = v ref = 1.25v -0.5 0.1 0.5 a -1 - 1 a isl2863x -500 150 500 pa -25 - 25 na z ref reference input impedance isl2853x 36 40 44 k ? isl2863x - 10 - g ? psrr power supply rejection ratio vs = +2.5v to +5.5v g = 1v/v 110 130 - db g = 10v/v 110 140 - db g = 100v/v 120 140 - db g = 1000v/v 120 140 - db i sc short circuit output source current r l = short to v- - 25 - ma short circuit output sink current r l = short to v+ - -25 - ma v oh output voltage swing, high r l = 10k ? to v ref -515mv - - 20 mv operating specifications v+ = 2.5v, v- = 0v, vcm = 1.25v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c . (continued) parameter description conditions min (note 6) typ max (note 6) unit
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 11 fn8364.1 november 22, 2013 v ol output voltage swing, low r l = 10k ? to v ref -515mv -- 20 mv 2.5v g0/g1 logic inputs instrumentation amplifier v ih logic input high threshold vs = (v+) - (v-) 0.8*(vs) -- v v il logic input low threshold vs = (v+) - (v-) - - 0.2*(vs) v v ih_z /v il_z hi-z logic input range vs = (v+) - (v-) 0.4*(vs) - 0.6*(vs) v v oc open circuit logic voltage set by 2 internal 100k ? resistors; v s = (v+) - (v-) 0.45*v s - 0.55*v s v z in logic input impedance - 50k - k ? 2.5v ac specifications instrumentation amplifier e n total input referred voltage noise e n = (e ni 2 + (e no /g) 2 + (i n *r s ) 2 ) e ni input noise voltage f = 0.1hz to 10hz; g = 100 - 0.4 - v p-p f = 1khz; g = 100 - 17 - nv/ hz e no output noise voltage f = 0.1hz to 10hz; g = 1 - 1.8 - v p-p f = 1khz; g = 1 - 65 - nv/ hz i n input noise current f = 10hz; r s = 5m ? ; g = 100 - 100 - fa/ hz gbwp gain bandwidth product g 10 - 2.3 - mhz g < 10 - 1.6 - mhz 2.5v transient response instrumentation amplifier sr slew rate 10% to 90% v out = 2v p-p ; g = 1 - 0.8 - v/s v out = 2v p-p ; g = 100 - 0.1 - v/s t gpd gain select prop delay all gains - 1 - s t s settling time to 0.1%, 4v p-p step to 0.1%, 2v p-p step - 20 - s to 0.01%, 2v p-p step - 70 - s t recover output overload recovery time, recovery to 90% of output saturation -1.5- s 2.5v dc specifications operational amplifier av open open loop gain - 140 - db v os input offset voltage t a = +25c -2.5 -0.2 2.5 v t a = -40c to +85c -3.475 - 3.475 v t a = -40c to +125c -4 - -4 v tcv os input offset voltage temperature coefficient t a = -40c to +125c -15 -0.5 15 nv/c i b input bias current t a = +25c -300 15 300 pa t a = -40c to +85c -300 - 300 pa t a = -40c to +125c -550 - 550 pa operating specifications v+ = 2.5v, v- = 0v, vcm = 1.25v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c . (continued) parameter description conditions min (note 6) typ max (note 6) unit
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 12 fn8364.1 november 22, 2013 i os input offset current t a = +25c -600 50 600 pa t a = -40c to +85c -600 - 600 pa t a = -40c to +125c -1100 - 1100 pa common mode input voltage range v+ = 2.5v, v- = 0v guaranteed by cmrr 0 - 2.5 v cmrr common mode rejection ratio v cm = 0v to 2.5v 110 135 - db 97 --db psrr power supply rejection ratio vs = 2.5v to 5.5v 120 135 - db i sc short circuit output source current r l = short to v- - 25 - ma short circuit output sink current r l = short to v+ - -25 - ma v oh output voltage swing, high from v out to v + r l = 10k ? to v cm -1020mv r l = 10k ? to v cm -- 25 mv v ol output voltage swing, low from v - to v out r l = 10k ? to v cm - 10 20 mv r l = 10k ? to v cm -- 25 mv 2.5v ac specifications operational amplifier c in input capacitance differential - 5.2 - pf common mode - 5.6 - pf e n input noise voltage f = 0.1hz to 10hz - 0.25 - v p-p f = 1khz - 10 - nv/ hz i n input noise current f = 1khz - 200 - fa/ hz gbwp gain bandwidth product - 3 - mhz note: 6. compliance to data sheet limits are assured by one or more methods: production test, ch aracterization and/or design. operating specifications v+ = 2.5v, v- = 0v, vcm = 1.25v, t a = +25c, unless otherwise specified. boldface limits apply over the operating temperature range, -40c to +125c . (continued) parameter description conditions min (note 6) typ max (note 6) unit
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 13 fn8364.1 november 22, 2013 typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. figure 5. pgia gain error distribution, g = 1 figure 6. pgia gain error distribution, g = 10 figure 7. pgia gain error distribution, g = 100 figure 8. pgia gain error distribution, g = 1,000 figure 9. pgia gain error distribution, g = 1 to 1,000 figure 10. pgia long term drift offset voltage number of amplifiers gain error (%) 6 8 10 12 0 2 4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 v s = 2.5v dc t a = -40c to +125c number of amplifiers gain error (%) 6 8 10 12 0 2 4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 v s = 2.5v dc t a = -40c to +125c number of amplifiers gain error (%) 4 6 8 10 12 0 2 4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 v s = 2.5v dc t a = -40c to +125c number of amplifiers gain error (%) 4 6 8 10 12 0 2 4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 v s = 2.5v dc t a = -40c to +125c number of amplifiers gain error (%) 80 100 120 0 20 40 60 -0.1 -0.075 -0.05 -0.025 0 140 -0.1 -0.075 -0.05 -0.025 v s = 2.5v dc t a = +25c 0 0 1020 304050 60 vos (v) time (days) 0.4 0.5 0.6 0.1 0.2 0.3 0.7 0.8 0.9 1.0 v s = 2.5v dc t a = +25c g = 1,000
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 14 fn8364.1 november 22, 2013 figure 11. pgia input offset voltage distribution figure 12. pgia output offset voltage distribution figure 13. pgia rti vos vs common-mode voltage figure 14. pgia rti vos vs common-mode voltage figure 15. pgia input bias current vs temp erature figure 16. pgia ios vs temperature typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) number of amplifiers v osi (v) 20 25 30 0 5 10 15 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 v s = 2.5v dc number of amplifiers v oso (v) 6 8 10 12 14 0 2 4 -10 -8 -6 0 2 4 10 v s = 2.5v dc -4 -2 68 16 18 input commom mode voltage(v) -2 0 2 4 6 -6 -4 -2 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 v s = 1.25v dc v os (v) v os (v) input common mode voltage (v) -2 0 2 4 6 -6 -4 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 v s = 2.5v dc 80 100 120 140 160 180 200 0 20 40 60 -50 -25 0 25 50 75 100 125 150 input bias current (pa) temperature (c) ib+, v s = 5v ib-, v s = 2.5v ib+, v s = 2.5v ib-, v s = 5v -50 0 50 100 150 200 -200 -150 -100 -50 -25 0 25 50 75 100 125 150 i os (pa) temperature (c) ios, v s = 5v ios, v s = 2.5v
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 15 fn8364.1 november 22, 2013 figure 17. pgia input common-mode range vs output voltage figure 18. pgia input common-mode range vs output voltage figure 19. pgia input common-mode range vs output voltage figure 20. pgia input common-mode range vs differential output voltage figure 21. pgia cmrr vs temperature figure 22. pgia psrr vs temperature typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) output voltage (v) common mode voltage (v) 0 1 2 3 -3 -2 -1 -3 -2 -1 0 1 2 3 v s = 2. 5v dc v ref = 0v isl2853x output voltage (v) common mode voltage (v) 0 1 2 3 -3 -2 -1 -3 -2 -1 0 1 2 3 v s = 2. 5v dc v ref = +2.5v isl2853x output voltage (v) common mode voltage (v) 0 1 2 3 -3 -2 -1 -3 -2 -1 0 1 2 3 v s = 2. 5v dc v ref = -2.5v isl2853x 0 1 2 3 -3 -2 -1 -6-4-20246 v s = 2. 5v dc v ref = 0v isl2863x vout+ to vout- (v) common mode voltage (v) temperature (c) cmrr (db) 80 100 120 140 160 180 0 20 40 60 -50 -25 0 25 50 75 100 125 150 v s = 2. 5v dc g = 1 g = 10 g = 100 g = 1000 temperature (c) psrr (db) 60 80 100 120 140 160 180 0 20 40 60 -50 -25 0 25 50 75 100 125 150 g = 1 g = 10 g = 100 g = 1000 v s = 2. 5v dc
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 16 fn8364.1 november 22, 2013 figure 23. pgia output voltage swing vs output current, isl2853x figure 24. pgia output voltage swing vs output current, isl2863x figure 25. pgia output voltage swing vs output current, isl2853x figure 26. pgia output voltag e swing vs output current, isl2863x figure 27. supply current vs supply voltage vs te mperature figure 28. pgia voh and vol vs temperature typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) 0.01 0.1 1 0.0001 0.001 load current (ma) voltage drop from rail (v) 0.01 0.1 1 100 10 vol v s = +3v voh load current (ma) voltage drop from rail (v) 0.1 1 0.001 0.01 v s = +3v 0.01 0.1 1 100 10 vol voh load current (ma) voltage drop from rail (v) 0.1 1 0.001 0.01 0.01 0.1 1 100 10 v s = +5v voh vol load current (ma) voltage drop from rail (v) 0.1 1 0.001 0.01 0.01 0.1 1 100 10 v s = +5v vol voh 2.8 3.0 3.2 3.4 3.6 3.8 4.0 2.0 2.2 2.4 2.6 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 t = -40c t = +25c t = +85c t = +125c supply current (ma) supply voltage v s (v) 6 8 10 12 0 2 4 -50 -25 0 25 50 75 100 125 150 voh 5v vol 5v voh 2.5v vol 2.5v voh and vol voltage (mv) temperature (c)
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 17 fn8364.1 november 22, 2013 figure 29. pgia 0.1hz to 10hz noise figure 30. pgia 0.1hz to 10hz noise figure 31. pgia voltage noise spectral density vs frequency, 1hz to 100khz figure 32. pgia voltage noise spectral density vs frequency, 1hz to 100khz figure 33. pgia current noise spectral density 1hz to 100khz, isl2853x figure 34. pgia current nois e spectral density 1hz to 100khz, isl2863x typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) voltage noise pk to pk (v) time (s) 110 234 567 89 0 -3 -2 -1 1 2 3 v s = 2.5v g = 1 0 -4 4 time (s) 110 234 567 89 0 v s = 2.5v g = 1000 -0.3 -0.2 -0.1 0.1 0.2 0.3 0 -0.4 0.4 -0.5 0.5 voltage noise pk to pk (v) voltage noise (nv/ hz) frequency (hz) 1 10 100 1000 10k 100k 1 10 100 1k 10k 100k v s = 2.5v isl2853x g = 1 g = 100 voltage noise (nv/ hz) frequency (hz) 1 10 100 1000 10k 100k 1 10 100 v s = 2.5v 1k 10k 100k isl2863x g = 1 g = 100 v s = 2.5v r s = 5m ? 1 10 100 1k 10k 100k frequency (hz) current noise (fa/ hz) 1 0.1 10 100 1k 10k g = 1 g = 100 roll off from c source isl2853x 1 10 100 1k 10k 100k 1 0.1 10 100 1k 10k current noise (fa/ hz) frequency (hz) v s = 2.5v r s = 5m ? roll off from c source isl2863x g = 1 g = 100
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 18 fn8364.1 november 22, 2013 figure 35. pgia gain vs frequency vs gain settings figure 36. pgia cmrr vs frequency figure 37. pgia positive psrr vs frequenc y figure 38. pgia negative psrr vs frequency figure 39. pgia gain vs frequency vs cl, isl2853x figure 40. pgia gain vs frequency vs cl, isl2 863x typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) 10 100 1k 10k 100k 1m frequency (hz) gain (db) 10m 20 30 40 50 60 70 -10 0 10 1000 500 300 200 100 50 20 20 10 4 2 1 v s = 2. 5v r l = 10k ? 60 80 100 120 140 160 0 20 40 60 cmrr (db) frequency (hz) 10 100 1k 10m 1m 10k 100k g = 100 g = 10 g = 1 v s = 2. 5v dc g = 1000 positive psrr (db) frequency (hz) 80 100 120 140 160 0 20 40 60 10 100 1k 10m 1m 10k 100k g = 1 g = 10 v s = 2. 5v dc g = 100 frequency (hz) 60 80 100 120 140 0 20 40 10 100 1k 10m 1m 10k 100k negative psrr (db) g = 100 g = 1 g = 10 v s = 2. 5v dc frequency (hz) 3 5 7 9 11 13 -5 -3 -1 1 1k 10k 100k 10m 1m 1000pf 470pf 3300pf 4700pf 2200pf v s = 2. 5v dc v out = 100mv p-p a v = 1v r l = 10k gain (db) frequency (hz) gain (db) 1 3 5 7 9 11 -5 -3 -1 1 470pf 3300pf 4700pf 2200pf 1000pf 1k 10k 100k 10m 1m v s = 2. 5v dc v out = 10mv p-p a v = 1v r l = 10k
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 19 fn8364.1 november 22, 2013 figure 41. pgia small signal pulse response, g = 1, isl2853x fi gure 42. pgia small signal pulse response, g = 1, isl2863x figure 43. pgia large signal pulse response, g = 1, 2, 10 isl2853x figure 44. pgia large signal pulse response, g = 1, 2, 10 isl2863x figure 45. pgia large signal pulse response, g = 1000, isl2853x figure 46. pgia large signal pulse response, g = 1000, isl2863x typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) time (s) voltage (v) -10 0 10 20 30 40 -0.02 0 0.02 0.04 0.06 0.08 0.1 -0.1 -0.08 -0.06 -0.04 -0.02 v s = 2. 5v d c r l = open v out = 100mv p-p 0 0.02 0.04 0.06 -0.06 -0.04 -0.02 time (s) -10 0 10 20 30 40 -5 5 15 25 35 v s = 2. 5v d c r l = open v out = 100mv p-p vout+ to vout- (v) time (s) voltage (v) -10 0 10 20 30 40 -1 0 1 2 3 -3 -2 g = 10 g = 2 v s = 2. 5v d c r l = open v out = 4v p-p g = 1 time (s) -1 0 1 2 3 -3 -2 -20 -10 10 20 30 40 0 av = 2 v s = 2. 5v dc r l = open v out = 4v p-p vout+ to vout- (v) av = 1 av = 10 time (s) -400 -200 200 400 800 1000 0 600 -0.5 0 0.5 1.0 1.5 2.0 2.5 -2.5 -2.0 -1.5 -1.0 v s = 2. 5v dc r l = open v out = 4v p-p voltage (v) time (s) vout+ to vout- (v) -0.5 0 0.5 1.0 1.5 2.0 2.5 -2.5 -2.0 -1.5 -1.0 -400 -200 200 400 800 1000 0 600 v s = 2. 5v dc r l = open v out = 4v p-p
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 20 fn8364.1 november 22, 2013 figure 47. capacitive load overshoot; isl2853x figure 48. capacitive load overshoot; isl2863x figure 49. positive overload recovery time, isl2853x f igure 50. positive overload recovery time, isl2863x figure 51. negative overload recovery time, isl2853x figure 52. negative overlo ad recovery time, isl2863x typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) -0.02 0 0.02 0.04 0.06 0.08 0.1 -0.08 -0.06 -0.04 output voltage (v) time (s) -10 10 50 0203040 0pf 100pf 300pf 500pf 800pf 1000pf -0.06 -0.04 -0.02 0 0.02 0.04 0.06 -0.16 -0.14 -0.12 -0.1 -0.08 output voltage (v) time (s) -10 10 60 0203050 40 0pf out+ 0pf out- 100pf out+ 100pf out- 300pf out+ 300pf out- 500pf out+ 500pf out- 800pf out+ 800pf out- 1nf out+ 1nf out- -3 -2 -1 0 1 2 3 time (s) 06101620 24 8 1214 18 g = 100 g = 1 g = 10 input and output voltage (v) v in -2 0 2 4 6 -6 -4 time (s) 060 140180 20 40 80 100 120 160 v in g = 100 g = 1 g = 10 input and output voltage (v) -1 0 1 2 3 -3 -2 -1 time (s) 04 14 2681012 g = 100 input and output voltage (v) g = 1 v in g = 10 -2 0 2 4 6 -6 -4 time (s) v in g = 100 input and output voltage (v) 060 140180 20 40 80 100 120 160 g = 1 g = 10
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 21 fn8364.1 november 22, 2013 figure 53. channel separation vs frequency, hostile ina, monitor opamp figure 54. channel separation vs frequency, hostile opamp, monitor ina typical instrumentation am plifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) channel separation (db) 60 80 100 120 140 0 20 40 frequency (hz) 10 100 1k 10m 1m 10k 100k opamp a v = 1 60 80 100 120 140 0 20 40 channel separation (db) frequency (hz) 10 100 1k 10m 1m 10k 100k ina g = 1 ina g = 100 ina g = 10
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 22 fn8364.1 november 22, 2013 typical operational amplifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. figure 55. op amp vos vs common mode figure 56. op amp vos vs common mode figure 57. op amp bias current vs temperature figure 58. op amp voh and vol vs temperature figure 59. op amp output voltage swing vs output current figure 60. op amp outp ut voltage swing vs output current input common mode voltage (v) -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 v s = 1.25v dc v os (v) a v = 100 input common mode voltage (v) v os (v) -2 0 2 4 6 8 10 -10 -8 -6 -4 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 v s = 2.5v dc a v = 100 -100 0 100 200 300 400 -400 -300 -200 -50 -25 0 25 50 75 100 125 150 input bias current (pa) ib+, v s = 5v ib-, v s = 5v ib-, v s = 2.5v temperature (c) ib+, v s = 2.5v 15 20 25 30 35 0 5 10 -50 0 50 100 150 vol 5v voh 5v voh 2.5v vol 2.5v voh and vol voltage (mv) temperature (c) 0.1 1 0.001 0.01 load current (ma) v s = +5v dc 0.01 0.1 1 100 10 voltage drop from rail (v) voh vol 0.01 0.1 1 0.0001 0.001 load current (ma) v s = +3v dc 0.01 0.1 1 100 10 voltage drop from rail (v) voh vol
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 23 fn8364.1 november 22, 2013 figure 61. op amp gain vs frequency figure 62. op amp capacitive load vs frequency figure 63. op amp power supply rejection ratio figure 64. op amp power supply rejection ratio figure 65. op amp small signal transient response figure 66. op amp large si gnal transient response typical operational amplifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) gain (db) frequency (hz) 10 100 1k 10m 1m 10k 100k 30 40 50 60 70 80 -10 0 10 20 a v = 1000 a v = 100 a v = 10 a v = 1 r g = 10k, r f = 100k r g = 1k, r f = 100k r g = 100, r f = 100k r g = open, r f = 0 v s = 2. 5v r l = 10k ? frequency (hz) gain (db) 2 4 6 8 10 12 14 -6 -4 -2 0 2 1k 10m 1m 10k 100k 0pf 470pf 1000pf 100pf v s = 2. 5v r l = 10k ? a v = 1 47pf 60 80 100 120 0 20 40 negative psrr (db) frequency (hz) 10 100 1k 10m 1m 10k 100k v s = 2. 5v dc a v = 1 60 80 100 120 140 0 20 40 positive psrr (db) frequency (hz) 10 100 1k 10m 1m 10k 100k v s = 2. 5v dc a v = 1 time (s) output voltage (v) -1 0 1 3 4 -0.02 0 0.02 0.04 0.06 0.08 0.10 -0.10 -0.08 -0.06 -0.04 2 v s = 2. 5v dc r l = open v out = 100mv p-p time (s) output voltage (v) 0 0.5 1.0 1.5 -1.5 -1.0 -0.5 a v = 1 a v = 10 -10 0 10 20 30 40 v s = 1.25v dc r l = open v out = 2v p-p
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 24 fn8364.1 november 22, 2013 figure 67. op amp voltage noise spectral density vs frequency figure 68. op amp 0.1hz to 10hz peak-to-peak voltage noise figure 69. op amp open-loop gain and phase vs frequency figure 70. op amp capacitive load overshoot typical operational amplifier performance curves t a = +25c, v cm = mid supply, unless otherwise specified. (continued) voltage noise (nv/ hz) frequency (hz) 1 10 100 1000 10k 100k 1 10 100 v s = 2.5v a v = 100 1000 10k 100k time (s) 110 23456 0 -0.3 -0.2 -0.1 0.1 0.2 0.3 0 -0.4 0.4 -0.5 0.5 voltage noise pk to pk (v) v s = 2.5v a v = 100 10 34 56 7 89 gain (db)/phase () 0 20 40 60 80 100 120 140 -20 v s = 5v simulation cl = 50pf gain phase 0.1 1 10 100 1k 10k 1m frequency (hz) 100k 10m 0.01 0.001 160 180 200 0 0.05 0.10 0.15 -0.15 -0.10 -0.05 output voltage (v) time (s) -10 10 50 0203040 0pf 100pf 300pf 500pf 800pf 1000pf v s = 2.5v dc a v = 1
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 25 fn8364.1 november 22, 2013 applications information precision sensor amplifier the isl2853x and isl2863x are a fa mily of ultra high precision instrumentation amplifiers. these amplifiers feature zero drift circuitry that provides auto offs et voltage correction and noise reduction, delivering very low offset voltage drift of 5nv/c and a low 1/f noise frequency corner down in the sub hz range. the instrumentation amplifier integrates precision matched resistors for the front gain stage and the differential second stage, providing very high gain accuracy and excellent cmrr. the precision performance makes these amplifiers ideal for analog sensor front end, instrument ation and data acquisition applications such as weigh scales, flow sensors and shunt current sensing that require ve ry low noise and high dynamic range. single-ended output the isl28533, isl28534 and isl28535 family of parts are differential input, single ended output instrumentation amplifiers using a three op amp architecture (figure 71). the first stage is differential input/differential output and is used to set the gain. the second stage is a difference amplifier which is used to remove the common mode voltage from the differential signal. with the integrated gain resistors and the programmable gains, these instrumentation amplifiers require no external components for gain setting and operation. there is an additional uncommitted zero drift operational amplifier included on the chip. this can be used to drive the ref pin if needed to provide a low impedance to ref. the ref pin is used to shift the output dc reference. note that on this device the ref input is a resistor that is pa rt of the difference amplifier non- inverting input. to ensure good common mode rejection in the output stage the ref pin should be driven by a low impedance source, such as the output of amplifier a4. any parasitic resistance added to the ref pin degrades the common mode rejection of the difference amplifier. differential output the isl28633, isl28634 and isl28635 family of parts are differential input, differential output instrumentation amplifiers and are ideal as a pre- amplifier/driver for differential input adcs (figure 72). with the integrated gain resistors and the programmable gains, these inst rumentation amplifiers require no external components for gain setting and operation. the first stage amplifier is identical to the first stage in the isl2853x family. the output stage is a difference amplifier which is configured to provide differential output drive. the ref pin is also available on this device and can be used to provide a dc shift of the output signal. on this device the ref pin is a high impedance input of an operational amplifier. the voltage used to drive this pin can be developed using a resistor divider without the need of an additional buffer without penalty of cmrr degradation. rfi filter the instrumentation amplifier inputs of the isl2853x and isl2863x have rfi filters for electro magnetic interference (emi) reduction. in emi sensitive applications, the high frequency rf signal can appear as a rectifie d dc offset at the output of precision amplifiers. because the gain of the precision front end can be 100 or greater it is critical not to amplify any conducted or radiated noise that may be present at the amplifier inputs. the rfi input is a 1k ? , 3pf lpf with a corner frequency of approximately 50mhz (see figure 73). gain stage output va+/va- pins the isl2853x and isl2863x inst rumentation amplifiers include pinouts for the output of the di fferential gain stage. va+ is referenced to the non-inverting input of the difference amplifier while va- is referenced to the inverting input. these pins can be figure 71. isl2853x block diagram + - + - ina- a2 a1 ina+ + - + - ref outa a3 a4 r g r g 3-state logic for r g gain control g0 g1 in+ in- out va- va+ 20k ? 20k ? 20k ? 20k ? figure 73. rfi filter inputs figure 72. isl2863x block diagram + - + - + - ina- a2 a1 ina+ outa+ a3 r g r g 3-state logic for r g gain control g0 g1 + - + - outa- ref a4 va- va+ 20k ? 20k ? 20k ? 20k ? 1m ? 1m ? + - + - a2 a1 ina+ r g r g ina- rfi filter fc = 50mhz rfi filter fc = 50mhz
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 26 fn8364.1 november 22, 2013 used for measuring the input common mode voltage for sensor feedback and health monitoring. the differential gain stage output pins va+ and va- buffers the input common mode voltage while amplifying differential volt age. by tying two resistor across va+ and va-, the buffered input common mode voltage is extracted at the midpoint of the resistors (see figure 74). this voltage can be sent to an adc fo r sensor monitoring or feedback control, improving the precisio n and accuracy of the sensor. programmable gain logic the isl2853x and isl2863x featur e a three-state logic interface for digital programming of the amplifier gain. this allows the pgia?s gain to be changed without an external gain setting resistors, improving the gain a ccuracy and reducing component count. the three-state logic pins have voltage levels for recognizing valid logic states to set the gain of the amplifier (see figure 75). with three logic states per input, this allows nine gain settings with just two digital input pins (see table 2). logic states of the g0/g1 pins can be achieved by simple pin- strapping to the supply rails for logic hi/low, or may be left floating for logic z. internal resistors on the g0/g1 pins set the logic level to mid-supply for logic z. alternatively a micro-controller can be used to drive the pins hi/low or they may be left in a high-z state. the v ih ,v il , and logic z threshold levels are ttl/cmos compatible for single 5v and 3v supplies. see table 1 for logic threshold levels. it is important to note that logi c threshold levels are referenced to the v- negative supply rail of the amplifier. for dual supply operation of the instrumentation amplifier logic threshold levels are shifted by the magnitude of v- . externally driven logic signals require level shifting to properly set amplifier gain. gain setting with dcp for applications without a tri-stat e driver the alternative solution for programmable switching the 9 gain settings is to use a dcp. using a dual dcp implements the capability to select all 9 gains with an i 2 c/spi bus interface, saving valuable gpio lines. the isl23328 is a dual 128 tap dcp that can switch the g0 and g1 pins with an i 2 c interface (see figure 76). the wiper of the dcp can be swept from v+ to v- in 128 steps. figure 74. common mode se nsing with va+/va- pins figure 75. g0/g1 logic threshold levels + - + - a2 a1 ina+ r g r g va- va+ ina- vx 10k ? va+ = vcm + vdm/2 va- = vcm - vdm/2 vx = vx = vcm [(va+) + (va-)] / 2 10k ? + - + - + - v cm -v dm 2 +v dm 2 v+ v- vil_z min vih_z max voc_l voc_h vil_0 max vih_1 min max low input for logic ?0? min high input for logic ?1? voc = floating pin voltage established by internal resistors max input for logic ?z? min input for logic ?z? logic ?1? logic ?z? logic ?0? undefined undefined vih_1 min vih_z max vil_z min vil_0 max table 1. logic threshold values g0/g1 parameter threshold voltage +5vdc +3vdc 1vih_1 min 0.8*vs 4v 2.4v z vih_z max 0.6*vs 3v 1.8v voc_h 0.55*vs 2.75v 1.65v voc_l 0.45*vs 2.5v 1.35v vil_z min 0.4*vs 2v 1.2v 0vil_0 max 0.2*vs 1v 0.6v vs = (v+) - (v-) table 2. programmable gain settings g1 g0 gain (v/v) isl28533 isl28633 isl28534 isl28634 isl28535 isl28635 00 1 1 1 0z 2 2 100 01 4 10 120 z 0 5 50 150 z z 10 100 180 z 1 20 200 200 1 0 40 300 300 1 z 50 500 500 1 1 100 1000 1000 figure 76. gain switching with isl23328 dcp v+ dual128 tap isl23328 g0 g1 rw_0 rw_1 isl2853x isl2863x in+ in- out+ ref dcp scl sda rhx rlx v- i 2 c bus out- v- v+
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 27 fn8364.1 november 22, 2013 gain switching delay time the g0 and g1 pins change the gain setting of the pgia. for applications that must switch ga ins at high frequency, consider that there is a gain switching propagation delay of ~1s before output response. the total response time for a gain change must also include the amplifier output settling time. see ?electrical specifications? starting on page 6 for output settling time. dual supply operation isl2853x and isl2863x typical applications utilize single supply operation. the single supply rang e is from 2.5v to 5v, but the amplifiers can also operate with split supplies from 1.25v to 2.5v. the g0 and g1 logic thre sholds are referenced to the most negative supply rail (v-), therefore a logic level shifter is needed in split supply applications when the g0 and g1 pins are not strapped to the amplifier supply pins (i.e., when driven by a single supply logic device). power supply and ref pin sequencing as the ref pin in some applications is tied to a high accuracy voltage reference vref (such as the isl21090), proper care must be taken that the voltage at ref does not come up prior to supply voltages v+ and v-. the ref pin esd protection diodes will be forward biased when the voltage at ref exceeds v+ or v- by more than 0.3v. for applications where ref must be present before v+ or v-, it is recommen ded to use the isl2863x family of pgia. as the ref pin is an very high impedance input, having a series resistance to limit the es d diode current will not severely impact cmrr performance. typically a 1k ? resistor will adequately limit this current. common mode input range the 3-op amp instrumentation amplifier architecture amplifies differential input voltage. the common mode voltage is removed by the difference amplifier at the second stage. consideration of input common mode and differential voltage must be taken to not saturate the output of the a1 and a2 amplifiers. this is a common mistake when input differential voltages plus the input v cm combined is large enough to saturate the output. the pgia features rail to rail output amplifiers to maximize output dynamic range thus signals va+, va- and vout+/vout- can drive near the supply rails. figures 17 to 20 give the typical input common mode voltage range vs output voltage for different ref voltages. application circuits typical application circuits for bridge sensor health monitor and active shield guard driver are shown in figures 77 and 78. sensor health monitor a bridge type sensor uses four matched resistive elements to create a balanced differential circuit. the bridge can be a combination of discrete resistors and resistive sensors for a quarter, half and full bridge applic ations. the bridge is excited by a low noise, high accuracy voltage reference or current source on two legs. the other two legs are the differential signal whose output voltage change is analogous to changes in the sensed environment. in a bridge circuit, the common mode voltage of the differential signal is at the mid point potential voltage of the bridge excitation source. for example in a single supply system using a +5v reference for excitation, the common mode voltage is +2.5v. the concept of sensor health moni toring is to keep track of the bridge impedance within the data acquisition system. changes in the environment, degradation over time or a faulty bridge resistive element will imbalance the bridge, causing measurement errors. since the bridge differential output common mode voltage is one-half the excitation voltage, by measuring this common mode the sensor impedance health can be monitored, for example through an adc channel (see figure 77). while common mode voltage can be measured directly off the bridge, this is not recommended because the bridge impedance is highly sensitive to any additional loading. sensing off the legs directly can give an erroneous reading of the analog signal being measured. si nce the va+ and va- pins buffer the input common mode voltage, this provides a low impedance point to drive the adc without using additional amplifiers. by continuously monitoring the common mode voltage this gives an indication of sensor health. active shield guard drive sensors that operate at far distances from the signal conditioning circuits are subjec t to noise environments that reduce the signal to noise ratio into an amplifier. differential signaling and shielded cables are a few techniques that are used to reduce noise from sensitive si gnal lines. reducing noise that the instrumentation amplifier canno t reject (high frequency noise or common mode voltage levels beyond supply rail) improves measuring accuracy. shielded cabl es offer excellent rejection of noise coupling into signal lines. however, cable impedance mismatch to signal wires form a common mode error into the amplifier. driving the cable shield to a low impedance potential reduces the impedance mismatch. the cable shield is usually tied to chassis ground as it makes an excellent low impedance point and is easily accessible. however, this may not always be the best potential voltage to tie the shield to, in particular for single supply amplifiers. in some data acquisition system s the sensor signal amplifiers are powered with dual supplies (5v or 12v). by tying the shield to analog ground 0v, this places the common mode voltage of the shield right at the middle of the supply bias - where the amplifiers operate with the best cmr performance. with single supply amplifiers becoming more popular choice as a sensor amplifier, shield at 0v is now at the lower power supply rail of the amplifier - typically a common mode voltage where the same cmr performance degrades. tying the shield at common mode voltage of mid supply rail is most applicable for high impedance sensor applications. an alternative solution for an improved shield guard drive is to use the va+ and va- pins for se nsing common mode and driving the shield to this voltage (see figure 78). using the va+ and va- pins generate a low impedance reference of the input common mode voltage. driving the shield to the input common mode voltage reduces cable impedance mismatch and improves cmr performance in single supply sensor applications. for further buffering of the shield driver, th e additional unused op amp on the isl2853x products can be used , reducing the need of adding an external amplifier.
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 28 fn8364.1 november 22, 2013 figure 77. application circui t: sensor health monitor figure 78. application circuit: active shield driver + - + - + - ina- a2 a1 ina+ outa+ a3 r g r g + - + - outa- ref a4 va- va+ 20k ? 20k ? 20k ? 20k ? +5v isl26102 24-bit adc in+ ref+ in- ref- 10k ? 10k ? +5v outa- outa+ va- va+ 350 3 50 3 50 vs- vs+ v+ v- gauge foil strain v+ v- isl21090 5v v ref isl28634 + - + - ina- a2 a1 ina+ + - + - ref outa a3 a4 r g r g in+ in- out va- va+ 20k ? 20k ? 20k ? 20k ? isl28533 10k ? 10k ? v+ v- common mode driver v cm sense +5v 100 ? +sig -sig shielded cable
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 29 fn8364.1 november 22, 2013 intersil products are manufactured, assembled and tested utilizing iso9001 quality systems as noted in the quality certifications found at www.intersil.com/en/suppor t/qualandreliability.html intersil products are sold by description only. intersil corporat ion reserves the right to make changes in circuit design, soft ware and/or specifications at any time without notice. accordingly, the reader is cautioned to verify that data sheets are current before placing orders. information furnished by intersil is believed to be accurate and reliable. however, no responsi bility is assumed by intersil or its subsid iaries for its use; nor for any infringem ents of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of i ntersil or its subsidiaries. for information regarding intersil corporation and its products, see www.intersil.com for additional products, see www.intersil.com/en/products.html about intersil intersil corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management semiconductors. the company's products addr ess some of the largest markets within th e industrial and infr astructure, personal computing and high-end consumer markets. for more information about intersil, visit our website at www.intersil.com . for the most updated datasheet, application notes, related documentatio n and related parts, please see the respective product information page found at www.intersil.com . you may report errors or suggestions fo r improving this datasheet by visiting www.intersil.com/en/support/ask-an-expert.html . reliability reports are also available from our website at http://www.intersil.com/en/support/q ualandreliability.html#reliability revision history the revision history provided is for informational purposes only and is believed to be accurate, but not warranted. please go t o the web to make sure that you have the latest revision. date revision change november 22, 2013 fn8364.1 ordering information table on page 5: removed ?coming soon? for isl28535fvz and isl28635fvz and evaluation boards. september 24, 2013 fn8364.0 initial release
isl28533, isl28534, isl28535, isl28633, isl28634, isl28635 30 fn8364.1 november 22, 2013 package outline drawing m14.173 14 lead thin shrink small outline package (tssop) rev 3, 10/09 detail "x" side view typical recommended land pattern top view b a 17 8 14 c plane seating 0.10 c 0.10 c b a h pin #1 i.d. mark 5.00 0.10 4.40 0.10 0.25 +0.05/-0.06 6.40 0.20 c b a 0.05 0-8 gauge plane see 0.90 +0.15/-0.10 0.60 0.15 0.09-0.20 5 2 3 1 3 1.00 ref 0.65 1.20 max 0.25 0.05 min 0.15 max (1.45) (5.65) (0.65 typ) (0.35 typ) detail "x" 1. dimension does not include mold flash, protrusions or gate burrs. mold flash, protrusions or gate burrs shall not exceed 0.15 per side. 2. dimension does not include interlead flash or protrusion. interlead flash or protrusion shall not exceed 0.25 per side. 3. dimensions are measured at datum plane h. 4. dimensioning and tolerancing per asme y14.5m-1994. 5. dimension does not include dambar protrusion. allowable protrusion shall be 0.80mm total in excess of dimension at maximum material condition. minimum space between protrusion and adjacent lead is 0.07mm. 6. dimension in ( ) are for reference only. 7. conforms to jedec mo-153, variation ab-1. notes: end view


▲Up To Search▲   

 
Price & Availability of ISL28533FVZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X